

AFRL-IF-RS-TR-2005-376
Final Technical Report
November 2005

HIGH LEVEL FUSION IN THE CYBER DOMAIN

University at Buffalo

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-376 has been reviewed and is approved for publication

APPROVED: /s/

DOUGLAS M. BOULWARE
Project Engineer

 FOR THE DIRECTOR: /s/

JOSEPH CAMERA, Chief
Information & Intelligence Exploitation Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
NOVEMBER 2005

3. REPORT TYPE AND DATES COVERED
Final May 05 – Aug 05

4. TITLE AND SUBTITLE
HIGH LEVEL FUSION IN THE CYBER DOMAIN

6. AUTHOR(S)
Moises Sudit, Shanchieh Yang, Michael Kuhl,
Adam Stotz, Michael Holender, Jared Holsopple,
Eric Bohannon, and Jason Kistner

5. FUNDING NUMBERS
C - FA8750-05-1-0207
PE - 62702F
PR - 558B
TA - II
WU - RS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University at Buffalo
Center for Multisource Information Fusion
Buffalo New York 14260

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFEA
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-376

11. SUPPLEMENTARY NOTES
 AFRL Project Engineer: Douglas M. Boulware/IFEA/(315) 330-4599/ Douglas.Boulware@rl.af.mil

 Summer Research Fellowship Final report.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The objective of this report is to summarize the work performed during the summer at AFRL, Rome Research site by a
team of researchers from SUNY at Buffalo and Rochester Institute of Technology (RIT). The team began their research
with lessons learned from the testing of INFERD v1, and applied research methods to overcome the deficiencies found.
These deficiencies and an overview of the old methodology of INFERD are discussed along with the results of this
research. Work discussed in the report includes attack identification and tracking techniques, identification of cyber
threats and modeling and generation of cyber environments for generation of data sets.

15. NUMBER OF PAGES
57

14. SUBJECT TERMS
 Cyber Indications and Warning, Cyber Situation Awareness, Threat, Intentions, Fusion

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1.. 1

1.1 INFERD MISSION.. 1
1.2 SUMMER OBJECTIVE .. 1
1.3 INTRODUCTION OF INFERD V1... 2

2 SUMMER WORK AND CREATION OF INFERD V2... 4
2.1 HACKFEST 2005 ... 6

3 LEVEL 2 FUSION MEASUREMENTS... 6
3.1 MEASUREMENTS AT THE FEATURE TREE LEVEL (LEVEL 1 FUSION)... 6
3.2 MEASUREMENTS OF THE ATTACK TRACKS (LEVEL 2 FUSION)... 7

3.2.1 Depth .. 8
3.2.2 Breadth ... 8
3.2.3 Reliability ... 8

3.3 EXAMPLE OF THE SITUATIONAL ASSESSMENT MEASURES ... 9
4 HANDLING FRAGMENTATION ... 10

4.1 FRAGMENTATION ... 10
4.2 DELETION/DISCARDING ... 11

4.2.1 Temporal Discarding.. 11
4.2.2 Decay Discarding ... 12

4.3 MERGING ... 12
4.3.1 Temporal Merging.. 12
4.3.2 Signature Merging.. 13
4.3.3 Commonality Merging.. 13

4.4 INDICATORS ... 13
4.4.1 Operating systems... 13
4.4.2 Inter-event Time.. 15
4.4.3 Signatures ... 16

5 IMPACT AND THREAT ASSESSMENT.. 17
5.1 APPLICATION TO LEVEL 3 FUSION.. 17

5.1.1 Capability ... 17
5.1.2 Opportunity... 17
5.1.3 Intent... 18

5.2 STOCHASTIC MODELING .. 18
5.2.1 Bayesian Networks ... 18
5.2.2 Hidden Markov Models .. 19
5.2.3 Potential Drawbacks .. 20

5.3 THREAT ASSESSMENT OF NETWORK DATA AND INFORMATION... 20
5.4 INPUTS ... 21
5.5 INFORMATION HIERARCHY .. 21
5.6 IMPACT ASSESSMENT... 22
5.7 THREAT ASSESSMENT .. 23
5.8 GENERALIZATION OF FRAMEWORK.. 24
5.9 IMPACT ASSESSMENT... 25
5.10 THREAT ASSESSMENT .. 25
5.11 FUTURE EXTENSIONS ... 25

6 SIMULATION ENVIRONMENT... 25

ii

6.1 PROBLEM STATEMENT ... 27
6.2 BACKGROUND AND RELATED WORK ... 27
6.3 GENERAL OVERVIEW OF THE SIMULATION MODEL FOR CYBER ATTACK DATA GENERATION .. 28
6.4 SIMULATION METHODOLOGY .. 29

6.4.1 General Modeling Approach .. 29
6.4.2 Customization of the Simulation Software.. 31

6.5 EXAMPLE ... 33
6.6 CONCLUSIONS AND FUTURE WORK ... 36

7 VISUALIZATION CYBER ATTACKS... 37
7.1 RELATED WORK: VISALERT .. 37
7.2 VIEWS FOR VISUALIZING CYBER ATTACKS.. 38

7.2.1 High Level View.. 38
7.2.2 Low Level View... 40

7.3 CONCLUSION.. 42
8 REFERENCES.. 42
APPENDIX A: CYBER ATTACK SIMULATOR (VERSION 1.0): USER’S GUIDE........................ 44
SOFTWARE SETUP ... 44
CONSTRUCTING THE COMPUTER NETWORK.. 45
SIMULATION OUTPUT .. 50

iii

List of Figures

FIGURE 1: WORK BREAKDOWN STRUCTURE ... 1
FIGURE 2: ATTACK TEMPLATES .. 3
FIGURE 3: MULTI-TIER FUSION FRAMEWORK.. 4
FIGURE 4: MULTISTAGE CYBER ATTACK MODEL ... 5
FIGURE 5: HYPER ATTACK TRACKS .. 5
FIGURE 6: EFFECTS OF DECAY RATE – AS Α INCREASES, DECAY BECOMES MORE LINEAR 7
FIGURE 7: THERE ARE FOUR ACTIVE ATTACK TRACKS UPON THE SAME GUIDANCE TEMPLATE...................... 9
FIGURE 8: EXAMPLE OF FRAGMENTATION PROBLEM .. 10
FIGURE 9: EXAMPLE OF ANALYSIS.. 11
FIGURE 10: EXAMPLE OF TEMPORAL MERGING .. 12
FIGURE 11: EXAMPLE OF SIGNATURE MERGING ... 13
FIGURE 12: EXAMPLE ATTACK TRACK/INTER-EVENT TIMES.. 16
FIGURE 13: EXAMPLE GUIDANCE TEMPLATE .. 19
FIGURE 14: EXAMPLE HMM DERIVED FROM FIGURE 1 ... 19
FIGURE 15: SIMPLE EXAMPLE OF OUR FRAMEWORK .. 22
FIGURE 16: INFORMATION FUSION APPLIED TO A SYSTEM.. 26
FIGURE 17: SIMULATION MODEL LOGIC FOR CREATING ENTITIES REPRESENTATIVE OF CYBER ATTACKS .. 29
FIGURE 18: GENERIC STATION SUBMODEL REPRESENTING NETWORK COMPUTERS 30
FIGURE 19: SIMULATION MODEL LOGIC FOR WRITING GROUND TRUTH AND IDS ALERT FILES 31
FIGURE 20: SIMULATION MODEL LOGIC FOR PRODUCING NOISE ALERTS .. 31
FIGURE 21: NETWORK TEMPLATE ... 32
FIGURE 22: SAMPLE COMPUTER NETWORK CONSISTING OF FOUR SUBNETS .. 33
FIGURE 23: SAMPLE NETWORK ... 34
FIGURE 24: SCENARIO SPECIFICATION DIALOG BOX FOR EXAMPLE ... 35
FIGURE 25: ATTACK DIALOG BOX FOR EXAMPLE ... 35
FIGURE 26: GROUND TRUTH ACTIONS .. 36
FIGURE 27: GROUND TRUTH ALERTS.. 36
FIGURE 28: ALERT FILE FOR IDS SNORTNETWORK_1 .. 36
FIGURE 29: VISALERT (UNIVERSITY OF UTAH)... 37
FIGURE 30: HIGH LEVEL OVERALL SITUATIONVIEW .. 39
FIGURE 31: HIGH LEVEL VIEW WHEN AN INDIVIDUAL ATTACK IS SELECTED.. 40
FIGURE 32: TRACK HISTORY... 41
FIGURE 33: GUIDANCE TEMPLATE .. 42
FIGURE 34: SIMULATION LOGIC FOR THE CYBER ATTACK SIMULATOR .. 45
FIGURE 35: NETWORK EXAMPLE... 46
FIGURE 36: MACHINE DIALOG BOX .. 46
FIGURE 37: CONNECTOR DIALOG BOX.. 47
FIGURE 38: INPUT TYPE SPECIFICATION DIALOG BOX .. 47
FIGURE 39: SCENARIO SPECIFICATION DIALOG BOX... 48
FIGURE 40: ATTACK SPECIFICATION DIALOG BOX.. 50
FIGURE 41: OUTPUT FILE DIALOG BOX... 50

iv

List of Tables

TABLE 1: EXAMPLE MATCHES .. 14
TABLE 2: FILES REQUIRED TO USE THE CYBER ATTACK SIMULATOR... 44

1

1. Introduction and Motivation

1.1 INFERD Mission
The Information Fusion Engine for Real-time Decision Making (INFERD)’s

objective is to provide real-time situational assessment of a domain of interest to facilitate
decision making of an analyst by detecting the current state and future threat of situations
within the environment through a hierarchical fusion of sensory data.

1.2 Summer Objective
The objective of this summer’s work was to take lessons learned from the testing of

INFERD v1, and apply research methods to overcome the deficiencies found. These
deficiencies and an overview of the old methodology of INFERD are discussed in the
Section 1.3. The results of this research and a description of the new methodology are
given in the Section 2. At the conclusion of the summer program an event was held at
AFRL called “Hackfest 2005”, in which our team was lucky enough to have an
opportunity to test the new system developed over the course of the summer. Our team’s
experiences taken away from this initial test of the system will be given in the Section
2.1. INFERD, both its old and current version, was designed and developed in such a
way as to make it portable across multiple domains. For the sake of this report, and the
program it was developed under, its application will be in the context of the cyber domain
in which it is a part of a larger system called the Event Correlation for Cyber Attack
Recognition System (ECCARS). Figure 1 summarizes the different major research areas
and which members of the team worked on each of the areas,

Figure 1: Work Breakdown Structure

Adam

Adam
Moises

Adam

Moises

Jarred
Jay

Jarred
Jay

Mike H.
Moises

Adam
Rich

David, Mike H.
Moises

Eric
Jay

SIMULATION
Jason & Mike K.

2

Team

• Dr. Moises Sudit (Team Manager)

Managing Director
Center for Multisource Information Fusion – University at Buffalo
Expertise: Optimization, Graph Theory and Heuristics

• Dr. Shanchieh Yang
Assistant Professor
Computer Engineering- Rochester Institute of Technology
Expertise: Information Theory, Visualization and Sensors

• Dr. Michael Kuhl
Associate Professor
Industrial and Systems Engineering – Rochester Institute of Technology
Expertise: Simulation and Optimization

• Ph.D. Students
o Adam Stotz (Industrial Engineering, University at Buffalo)
o Michael Holender (Industrial Engineering, University at Buffalo)

• Bachelor and Masters Students
o Jared Holsopple (Computer Engineering, Rochester Institute of Technology)
o Eric Bohannon (Computer Engineering, Rochester Institute of Technology)
o Jason Kistner (Industrial Engineering, Rochester Institute of Technology)

• David Sudit (Computer Engineering, Northwestern University)

1.3 Introduction of INFERD v1

The main idea of INFERD v1 in the ECCARS system is to fuse a stream of incoming
heterogeneous IDS alerts to a database of Attack Templates and rank them according to
how likely they are taking place. These Attack Templates are developed a priori and
represent the possible complex multistage attacks which may take place within the
environment. This ranking of Attack Templates is presented to the user in a method
which gives them a situational awareness of their network and aids them in their decision
process of how to mitigate the threat. The decoupled architecture along with the
standardized XML interfaces allows for facilitated plug-and-play integration with
external applications and allows us to leverage research being performed by other teams
such as a graph matching application developed by 21st Century Technologies.

Attack Templates, shown in Figure 2 define the cyber attacks monitored in the alert
stream. These structures are created a priori in a hierarchical top-down fashion manually
by a subject matter expert (SME). These attack graphs are specified in and loaded from
an XML file when the system is started. It is implausible to expect a human operator to
generate all possible cyber attacks manually which makes the system dependent upon the
success of a related future research effort to automatically generate the exhaustive set of
possible attacks for a given network.

In v1 these templates are very rigid in the sense that specific IP addresses and alert
information must be encoded into the template set making the number of templates
exponential with respect to the number of machines in a given network.

3

Figure 2: Attack Templates

Fusion is performed on the templates themselves in a bottom-up fashion as shown in
Figure 3. L0 fusion is defined to be the correlation of alerts to Feature Nodes in which
the results are the assertion of the Feature Nodes which appropriately characterize the
alert which was fused. Once a Feature Node is asserted, L1 fusion takes over and
calculates a credibility value for the Template Node containing the Feature Tree which
contained the newly asserted Feature Node. After the L1 credibility value is calculated
for the Template Node, any Attack Template containing that node then performs an L2
fusion process which calculates an overall credibility for the Attack Template. These
Attack Template credibilities are then used as a mechanism on which to rank the
complete a-priori set of Attack Templates. Focus for the rest of this section will now
shift to the problems inherent in this aforementioned methodology as discovered in the
blind test held at CUBRC last May.

The major deficiency found during the blind test, and it was not a surprise, was the
necessity for automatic template generation. When not knowing the scenario that will be
played out, an exhaustive set of possibilities must be generated to ensure the successful
capturing of that scenario and thus results in an unmanageable number of a-priori
templates for a large network.

The other major deficiency found was not being able to distinguish between attacking
parties. Since the templates only characterized what was happening and not who was
doing it, a major request of the customer was not able to be met.

4

Figure 3: Multi-tier Fusion Framework

2 Summer work and creation of INFERD v2

INFERD v2 is the result of the summer research focusing on the mitigation of these
problems within the INFERD framework. The most significant change made, requiring
an almost complete rewrite of the existing INFERD code, was instead of ranking an
exhaustive set of a-priori templates, we allow an a-priori attack model (or small set of
models), which we call a Guidance Template, guide the dynamic instantiation and
evolution of Attack Tracks. Each of these Attack Tracks is associated with a single
attacking party and is an accumulation of events triggered by their actions. In this new
methodology the old notion of Attack Templates like the one shown in Figure 2, can now
be considered an Attack Track whose instantiation is of the Guidance Template shown in
Figure 4.

Guidance Templates consist of nodes and arcs, where nodes consist of a Feature Tree
as in the old methodology and represent attack steps in the aggregate Multi-stage attack
model. Arcs represent feasible transitions between attack steps and help define for
Attack Tracks whether new sensor information coming into the system should be fused to
which Attack Tracks. Both the nodes and arcs are attributed with Template Variables
which take on values when those components are instantiated within an Attack Track.
Through this dynamic process of instantiation, we can now track attacking parties
throughout their attack evolution and we no longer need an exhaustive set of attack step /
target machine combinations.

5

Figure 4: Multistage Cyber Attack Model

Attack Tracks from a traditional Information Fusion perspective are hypotheses about
the situation of the environment and the aggregation of the evaluation of these hypotheses
can be thought of the situational assessment (L2 fusion). Since we are now performing
fusion on dynamic attack tracks instead of a-priori templates, new SA algorithms were
also researched this summer and are implemented in a modular plug-and-play fashion
within the new INFERD framework. This is necessary because there is a low probability
that two different environments will require exactly the same situational assessment, even
if their models follow a common schema.

In the new methodology it is very possible for a single alert to be fused to multiple
Attack Tracks and in the cyber context this is a problem. Since Attack Tracks represent
the steps of a single attacking party, how can a single event detected by an IDS sensor be
triggered by multiple attackers? To overcome this problem, the new version of INFERD
introduces a notion of Hyper Attack Tracks (HATs).

As shown in Figure 5 when a single event is fused to multiple attack tracks, that event
then becomes a Hyper Node and a Hyper Attack Track is created whose root is the Hyper
Node. This introduces a problem of fragmentation because in reality it was a single party
who executed the attack, even though it was fused to multiple attacking parties during
INFERD’s processing.

Figure 5: Hyper Attack Tracks

1
2

i

M

X

Y

X

X

X
What we see

1
2

i

M

X

Y

X

X

X
Ground Truth

1
2

i

M

X

Y

X

X

X

INFERD HAT

X

1
2

i

M

X

Y

X

X

X
What we see

1
2

i

M

X

Y

X

X

X
What we see

1
2

i

M

X

Y

X

X

X
Ground Truth

1
2

i

M

X

Y

X

X

X
Ground Truth

1
2

i

M

X

Y

X

X

X

INFERD HAT

X

6

Just as plug-and-play algorithms for SA were researched over the summer, de-
fragmentation algorithms were also researched. Because it is likely that no single metric
will perform best in all situations, the de-fragmentation process built into INFERD v2
leverages from concepts introduced by Multiple Managed Algorithms (MMAs). Here,
the plug-and-play algorithms can be loaded and executed on Hyper Attack Tracks and
any one decision will not be finalized until the combined estimations from all managed
algorithms cross some configurable threshold of confidence.

2.1 Hackfest 2005

Hackfest this past year, consisted of four teams each containing a red and blue group.
The red groups of each team were responsible for breaking into the other teams’ networks
and modifying a special file called a “flag”, while the blue teams were responsible for
defending their own flags. This is a very attack rich environment which can provide a
good stress test to the installed systems.

Since ground truth is not yet known for the events of Hackfest, the accuracy of
INFERD v2 cannot yet be determined. The new system did, however, perform well from
a computational efficiency perspective. Over the 13 hour period of activity
approximately 1.5 million alerts were produced. This alert volume dwarfs that of even
current large scale networks and INFERD kept up with the pace being able to process
approximately 500 alerts per second.

3 Level 2 Fusion Measurements

3.1 Measurements at the Feature Tree Level (Level 1 Fusion)

When data is input to INFERD, it is linked to Feature Nodes based on the type of
alert that is sensed. In this particular domain an alert occurs or it does not, hence the
given values are binary. Feature Nodes can have an “importance weight (u)” assigned to
them. Upon completion of the aforementioned process, INFERD obtains an aggregated
value of the Feature Nodes (w) for the Template Node at the top of the Feature Tree
which then becomes a node on an Attack Track. The Credibility Factor (CF) decays with
time according to Equation 1. This time decay is calculated based on the entire Attack
Track. For instance, once a new node is attached to a current Attack Track, its time is
“restarted” (t = 0) and the decay commences from there.

 (1)

For Template Node k of Attack Track i of Guidance Template j
 wk = aggregated value of the Feature Nodes
 Li = lifetime of Attack Track i
 t = elapsed time since the most recent attack on Attack Track i

i
i

i
i

L

tL

kk
ij

e

ewCF
α

α

−

⎟
⎠
⎞⎜

⎝
⎛ −−

−

−
=

1

1*

7

 αi = decay rate of Attack Track i

The lifetime and decay rate of each Attack Track is chosen by the user. Figure 6 shows
the effect of different decay rates using the example Feature Tree in Figure 3 assuming a
lifetime Li = 20.

Figure 6: Effects of decay rate – as α increases, decay becomes more linear

3.2 Measurements of the Attack Tracks (Level 2 Fusion)

The Level 2 measures use the time-decayed Credibility Factors obtained above to
help the user assess the current situation of his/her network. The following defines the
mathematics used in calculating the L2 measures:

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 3 5 7 9 11 13 15 17 19 21

a=1
a=2
a=5
a=10
a=100

(,) 1,...,
where

=Guiding Template graph j j
=Vertices of Guiding Template graph j
=Edges of Guiding Template graph j

(,) 1,...,

where
Number of Instances of G

j j j

j

j

j

j j j
it it it jt

jt

GT V E for j n

GT
V
E

G V E for i m

m

= =

∀

∀

∀

= =

=

1

1 1

1

uiding Template j active at time t j,t

is a subset of a Guiding Template with

Set of stages

 , ()

=value for each stage h H

() { : }

j j
it

H

h
h

h f

H n
j

h
h j

h
n

j
h h

j

G GT

S S

S S h f H h f

v S v V

r

s v r v S v V

h

=

= =

=

∀

⊆

= =

= ∅ ∀ ∈ ≠

∈ ∀ ∈

∈

= ∈ ∀ ∈

U

I

U U

U
max { }

j
it

ijt
k V
Max h H

∈
= ∈

8

3.2.1 Depth

The Depth of an attack measurement gives an indication of how close your adversary
is to his/her possible target. It helps answer the question; how far into the attack is this
particular hacker? Equation 2 describes the calculation.

(2)

3.2.2 Breadth

The Breadth of an attack measures how much of the entire possible scope of the
attack has already taken place or how “full” the attack is in comparison to the entire
Guidance Template. The denominator of Equation 3 (Bt

max) calculates the total possible
Credibility assuming all nodes of the Guidance Template are instantiated, it is a
normalization factor. The numerator sums up the Credibilities of the Attack Track.

 (3)

It can be argued that a hacker is more knowledgeable if the depth is large and the breadth
is small implying that they have taken a direct route toward their goal. The converse may
be true as well; if the breadth is large and the depth is small, one could infer the hacker
may not be as advanced. This notion is still up for debate, but if true can be used for
behavioral modeling to help answer questions on Impact Assessment (Level 3 fusion) or
the Fragmentation problem as introduced in Section 2 and discussed in detail in Section
4.

3.2.3 Reliability

Reliability is an entropy-based function that calculates how sure we are that this
particular attack is continuing to take place. Tsallis [17, 18] formulates a general form of
entropy (Equation 4) containing a parameter q that can be optimized for any specific
domain. For most Optimization and Information Theoretical problems, q 1 thus
giving Shannon’s [15] Entropy function (Equation 5).

 (4)

 (5)

max max({ (,) : }) /(1) , ,
ijt ijt

j i
it k k kh h

D r CF t v S H i j tα= + ∈ + ∀

max

max

1,...,1 1,...,

max

{ }

(,)
, ,

ijt

jt

j
k it

h
j

t h iti mh j n

j
ki k

v V
ijt

t

B Max S V t

CF t
B i j t

B

α

=
= =

∈

= ∩ ∀

= ∀

∑

∑

1

1
1

−

−
=

∑
=

q

p
kH

N

i

q
i

q ∑
=

>=
N

i
i kp

1
0,1

∑−=
i

ii ppkH log

9

Assume we have K equi-probable states such that H = log K, we want the overall number

of states represented by a decreasing function of the variable ∑
=

=
||

1

N

k

j
kiCFx . We obtain the

following extremes using the above method for calculating entropy (H):

 (6)

Since a single value of entropy has little interpretive value, we borrow the notion of
Relative Entropy from Pierce and Shannon [13] to obtain our Reliability measure as seen
in equation 7.

(7)

3.3 Example of the Situational Assessment Measures

Assume we have the following Guidance Template (Figure 7) with four Attack
Tracks instantiated upon it.

Figure 7: There are four active Attack Tracks upon the same Guidance Template

1-0.45
0.55

2-0.3
0.7

3- 0.92
0.08

4-0.7
0.3

5-0.6
0.4

6-0.45
0.55

7-0.4
0.6

Stage 1 Stage 2 Stage 4Stage 3

1-0.45
0.55

2-0.3
0.7

3- 0.92
0.08

4-0.7
0.3

5-0.6
0.4

6-0.45
0.55

7-0.4
0.6

Stage 1 Stage 2 Stage 4Stage 3

3- 0.92
0.08

7-0.4
0.6

Stage 1 Stage 2 Stage 6

Attack Track 1 Attack Track 2

Attack Track 4

∑
=

+−=+−=
||

1
1||1||

N

k

k
ijCFNxNK

)1|log(||log)0(

0)1log(|log|)|(

0max

1min

+====

=====

∀=

∀=

NKxHH

KNxHH

kCF

kCF

k
ij

k
ij

)1|log(|

)1|log(|)1|log(|
)(

||

1

minmax

max

+

+−−+
=

−
−

=
∑

=

N

CFNN

HH
xHHE

N

k

k
ij

1-0.45
0.55

3- 0.92
0.08

4-0.7
0.3

5-0.6
0.4

6-0.45
0.55

7-0.4
0.6

Stage 1 Stage 2 Stage 4Stage 3

Attack Track 3

10

1

2

n

X

X

X

Y

AT1

AT2

ATn

HAT

Using Equation 2 we can calculate the Depth of Attack Track 1 (upper left).

Assuming that there are a total of eight stages in the given Guidance Template and the
furthest point of the attack is at stage 4, half way through toward the goal, then the depth
would be 0.489.

Using Equation 3 we calculate the Breadth of Attack Track 1. We show all Attack
Tracks in Figure 7 because the Breadth calculation is reliant on each of the active Attack
Tracks. B = 0.424. This also makes sense since this Attack Track appears to be rather
“full” in comparison to the rest.

Finally we calculate the Reliability of Attack Track 1 using Equation 7. R = 0.312;
this suggests that there is about a 31% chance that this particular attack is continuing to
take place, thus it may not be a major concern in respect to others.

4 Handling Fragmentation

The purpose of the Fragmentation Handler is to be able to assist security personnel
determine who is attacking a computer network in a multi-stage attack. Hackers can use
other’s computer identities to attack a different computer and this makes it hard for
security to correctly determine who the original attacker is (generally referred to as a
stepping stone). Through research and discussion with Subject Matter Experts (SME’s)
we have found that hackers can be characterized using indicators to determine their
behavior. We hope to use this characterization to assist analysts using this system to
make the decision rather than providing them with one.

4.1 Fragmentation

Fragmentation is when two or more attack tracks end up attacking the same computer.
Then from that computer another attack is detected. The question is “Who is responsible
for the attacks?” We use this fragmentation handler to give the user some numbers to
maybe help them determine where the attacker is located. Figure 8 shows an example of
the fragmentation problem.

Figure 8: Example of Fragmentation Problem

11

1

2

n

X

X

X

Y

AT1

AT2

ATn

HAT X

Let’s say you have one to n attackers. We denote each attack track as AT1 to ATn, where
n must be at least two. All of the attackers attack computer X. In turn one of them uses
the identity of computer X to attack computer Y. The problem now is that when you see
the attack at computer Y you have n possibilities of who is continuing their attack to Y.
We will call X the Hypernode. The track after and including X will be called HAT or
Hypernode Attack Track. Our definition of a Hypernode is a Template node in two or
more active AT’s from which the Guidance Template has correlated a new attack. That
is, it is a node representing a subset of AT’s that cannot be differentiated or are
ambiguous as attacks progressing from that point forward. There are some interesting
cases that happen when we implement Hypernodes. First, if a Hypernode does occur
then we only need to add one more attack track. So the above example would turn into
Figure 9. Secondly, if another Hypernode occurs after X then we again only need to add
one more AT to the end with the starting node being the Hypernode. These rules will
help keep the number of AT’s we have to a minimum.

Figure 9: Example of Analysis

To decipher which of the n AT’s is continuing his or her attack we will use three
different methods. First we will do deletion or discarding of attack tracks. The second
step will be the merging of the attack tracks in the set that are left over. Lastly we will
take the remaining attack tracks and rank them using indicators. We believe these
indicators can be used to compare the characteristics of the AT’s to the HAT and tell the
user which AT we believe might have continued the attack to Y.

4.2 Deletion/Discarding

There are situations where we have found that certain attack tracks can be discarded.
By removing these attack tracks first it will help keep calculation time as quick as
possible.

4.2.1 Temporal Discarding

The first discarding method is temporal discarding. Temporal discarding happens

when the time an attack track happens is after that when the HAT already exists. For
example, let’s look at Figure 8 again. Let’s say the attack to X in attack track two (AT2)
happened one hour ago. The attack from X to Y in the HAT was seen three hours ago.

12

1

2

X

X

AT1

AT2

3 X

Y

AT3

HAT X

We can say that since the HAT attack already happened before attacker two even reached
point X that AT2 can be discarded out of the possibilities.

4.2.2 Decay Discarding

Our second deletion method is decay discarding. Decay discarding deals with time as
did temporal discarding. The difference between the two is that decay discarding looks at
how long ago the attack to the Hypernode occurred. For example, if AT2 happened 4
months ago and we set our threshold to be 3 months. Then at this moment the attack
from X to Y occurs. We assume that since the AT2 happened such a long time ago and
the attack on Y just happened that it is very likely that it is not attacker two continuing
the attack. Other methods are being looked into as we feel that eliminating attack tracks
before the computation stage will help us give more accurate results and in a quicker
time.

4.3 Merging

The Deletion/Discarding rules are absolute and will work consistently, Merging and
Indicators, have no guarantees as to them working right every time. These are just
methods that will aide the user in deciding who is more likely to have continued the
attack past the Hypernode. Three merging techniques are Temporal, Signature and
Commonality merging.

4.3.1 Temporal Merging

Temporal merging occurs when one and only one of the attack tracks has the most
recent attack time and the other AT’s in the set have happened a considerable time ago.
For example, in Figure 10 we see there are three ATs and the HAT, which has just
occurred. If AT1 and AT3 happened one month ago and AT2 occurred one day ago then
we are claiming that AT2 is more probable to be the culprit to have continued the attack.

Figure 10: Example of Temporal Merging

13

1

2

X

X

AT1

AT2

3 X

Y

AT3

HAT X

W YAT2

4.3.2 Signature Merging

The second type of merging is Signature. Signature relates to the personality of an
attacker. The system looks at what the attacker has done up to the point of the
Hypernode. Then it looks at what has been going on after the Hypernode. Those two
personalities are then compared to each other and we claim that if one is much more
similar than the others that it will most likely be the one continuing the attack.

4.3.3 Commonality Merging

Commonality merging is the third type of merging we have discovered. Figure 11
shows an example where at some point in AT2 there is a node called W. From that node
W the attacker had attacked computer Y. The attacker of AT2 still went ahead and
attacked X at some point in time. Two situations arise if this occurs. First if the attack
from W to Y happened before the attack from X to Y then we claim that AT2 most likely
was not the one continuing the attack because he or she already had access to Y and did
not need to go through X to get access to Y. The second situation is if the W to Y attack
happened after the X to Y attack then we claim it is likely AT2. We say this because if
AT2 went from X to Y he or she would already know how to infiltrate the system and
could do so easily from a different computer like W.

Figure 11: Example of Signature Merging

4.4 Indicators

After using the deletion and merging techniques to lower the number of attack tracks
to a minimum we start to use indicators to give us probabilities of who is the attacker.
After many discussions with subject matter experts we came across three indicators
which they believe can be used to characterize traits of hackers. The three indicators are:
Operating system usages and patterns, inter-event times between attacks and signatures.

4.4.1 Operating systems

Every attack registered by the sensors is connected with a specific Operating system
(OS). A non-experienced hacker might only know how to use certain operating systems
and might use the same one through out the attack. An experienced hacker would know
how to use many operating systems and to try to avoid being tracked down would jump

14

around operating systems. These two statements helped us come to find two
measurements, total percentage and randomness, which we feel show the user who is the
more likely attacker.

Total percentage (TP) is a measurement used to see how much of the same OS is
being used in each AT to the HAT. It is measured using Equation 8.

(8)

where N is the number of nodes in the HAT not including the Hypernode, sN is the
number of nodes that contain OS type s, jN is the number if nodes in ATj, j

sN is the
number of nodes that contain OS type s in ATj and S is just the number of different OS
types. We exclude the Hypernode because after testing we saw that it artificially
increased the results.

OS
type

HAT

AT1

AT2

AT3

1-
(HAT-AT1)

1-
(HAT-AT2)

1-
(HAT-AT3)

A 3/5 3/5 1/5 2/7 1 0.6 0.69
B 2/5 1/5 0 1/7 0.8 0.6 0.74
C 0 1/5 1/7 0.8 0.86
D 0 4/5 0.2
E 0 1/7 0.86
F 0
G 0 1/7 0.86
H 0
I 0
J 0 1/7 0.86
Avg. 0.867 0.467 0.812

Table 1: Example Matches

Here is an example to explain how the math shows us who is attacking. Let’s say that

we find there are ten OS types, S = {A,B,C,…,J}. The HAT and AT’s look as follows:
HAT:A-A-A-A-B-B, AT1:A-A-A-B-C-A, AT2:D-D-D-D-A-A, AT3:E-G-J-A-B-C-A-A.
The bold letter ‘A’ represents the Hypernode. The value for A in the HAT is 3/5 because
we have a total of five nodes not including the Hypernode and we have three of OS type
A. Then you take that value and subtract it from the total percent of A in AT1 and then
take the difference to get the similarity. Next we take an average to get the average
similarity over all the OS types. We continue this process and find that AT1 is 86.7
percent similar to the HAT and AT3 is very similar as well at 81.2 percent.

This measurement will show us a lot about the hackers but we came across a situation
that caused this measurement to fail. Total percent failed when the OS in both attack

NNN
NP

NNN
NP

j
sj

j
s

AT

s
s

HAT

j
s

s

⊆=

⊆=

,||
||

,||
||

j
S

PP
TP Ss

ATHAT

j

j
ss

∀
−−

=
∑
∈ ,

||

|)|1(

15

tracks were completely different from that of the HAT. For example, if we use the same
set of OS types as above and the tracks look like, HAT: E-F-G-H-I, AT1: A-A-A-A-E and
AT2: A-B-C-D-E, then both values come out to be zero similarity. By looking at this
situation we found that AT2 would be more likely to have continued his attack as AT1
seems to just know how to use OS A. So we came up with a randomness measurement
using entropy. The entropy (E) measurement is done by taking the entropy of each AT
and subtracting it from the entropy of the HAT. We divide that value by the max entropy
with is –log(1/S), where S is the number of OS types. This keeps the value normalized.
After normalizing and subtracting the value from one to get the similarity of the
randomness of each AT compared to the HAT.

(9)

So in the example we gave above AT1 would end up having very little similarity in

this value and AT2 would have a substantial amount of similarity, which is the desired
result.

4.4.2 Inter-event Time

Inter-event time is the time between each attack. The attackers sometimes have
patterns of how much time it takes them to do each attack and this could be seen as a
continuation into the HAT which could point us to the correct attacker. The way we have
decided to use inter-event times is to form regressions and calculate the error. For each
AT a regression will be formed. It can be a line, exponential or power regression. We
decide what kind of regression it will be by looking at the correlation coefficients until
we either find one that is ninety-five percent correlated or we take the kind that is the
most correlated out of the three. Then the HAT inter-event times are plotted onto the
regressions. Whichever regression produces the least amount of error is the AT we
associate with the HAT. To find these regressions we just use the normal regression
formulas as shown on equation 10 and 11.

∑−= ss ppH log

16

(10)

(11)

where m is the slope of the line, b is the intercept and R2 is the correlation coefficient.
The x values are just the node number in each attack track and the y values are the inter-
event times. Here is an example of how we use regression. Let’s say that the attack
tracks and inter-event times are shown in Figure12.

Figure 12: Example Attack Track/Inter-Event Times

Given these times we find that AT1 is 99.2 percent correlated with the exponential
regression and that AT2 is 99.5 correlated with the linear regression. Next we calculate
what the predicted inter-event times should be for the HAT. Take the averages of the
error found between the actual and predicted inter-event time for both the attack tracks.
In this case AT1 has an average error of 10.605 and AT2 has an average of 0.275. To get
the similarity value we evaluate the following:

 Similarity value for AT1 = 1 – (10.605/(10.605 + 0.275)) =0 .025

Similarly for AT2 we replace the numerator with 0.275 and get 0.975. So we find that
AT2 is 97.5 percent correlated to the HAT and AT1 is only 2.5 percent correlated and we
say that AT2 is probably the hacker that continued the attack.

4.4.3 Signatures

We believe that signatures will be the most important part in fragmentation. We think
that the concept of Conceptual Spaces could be used to give the user a very accurate
comparison of traits of hackers. We think that if you set the HAT to be the object and
then take each AT and compare that to the HAT using concept spaces that the value given
will be the most accurate way to help the user decide between hackers.

2

2222

2

22

)(*)(

)(

)(
....

)(
)(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−

−
=

−
=

−
−

=

∑ ∑∑ ∑
∑ ∑ ∑

∑ ∑
∑ ∑

∑ ∑ ∑

yynxxn

yxxyn
R

n
xmy

b
xxn

yxxyn
m

17

5 Impact and Threat Assessment

Since many commercial tools focus primarily on assessing the threat of individual
alerts and alerts occurring on the same machine, a new approach is needed to assess the
impact and the threat of incoming attacks spanning multiple machines. The follow
sections discuss how cyber attacks fit into level 3 of JDL data fusion model, the
applicability of stochastic models, and a proposed novel algorithm for multi-stage cyber
attack threat assessment.

5.1 Application to Level 3 Fusion

In the JDL model, level 3 fusion is characterized by the following three attributes --
capability, opportunity, and intent [2]. The combination of these three attributes can lead
to estimates of what the attacker plans to do and what the impact of such an action would
be.

The following analyzes each of the three attributes of level 3 fusion, and discusses how
they could be applied to cyber attacks.

5.1.1 Capability

Capability is what the attacker is able to do. The capability of an attacker depends on
its educational level and physical resources. There are many different levels of hackers.
They range from normal computer users who simply download hacking scripts to a very
advanced hacker who has extensive knowledge of vulnerabilities in networking and
operating systems. An advanced hacker will be able to perform more complex attacks
than a hacker who is simply running a script. Therefore, the type of attack could indicate
the level of the hacker. If a complex attack is detected, the hacker is likely to be more
advanced and thus a higher threat level could be associated with that attack. However, if
a common script attack occurs, the attacker could be a novice hacker running a script – it
could still, however, be an advanced hacker. Therefore, the complexity of the attack can
only establish a lower bound on the educational level of the hacker.

A hacker must have access to a computer capable of connecting to the network to be
hacked. In most cases, the computer is one connected to the internet; however it may be
possible that the hacker has access to a workstation in the internal network.

5.1.2 Opportunity

Opportunity is what the attacker can do next. Opportunity can be determined by the
vulnerabilities of the system being attacked and what information the attacker currently
has access to. In cyber attacks, opportunity applies to what the hacker is able to do next.
Consider a case where a hacker knows how to exploit a service on a server to obtain
administrative rights. While the hacker has the capability of exploiting that service, he
cannot exploit that service until he knows that it is running on the server. If he
determines that the service is running on the server, then he has the opportunity to exploit

18

that service. Now, if the hacker is unaware of how to exploit a particular service, then the
opportunity to exploit the service still exists, but the likelihood of it occurring is small
because of the limited capability.

5.1.3 Intent

Intent is what the attacker plans to do and is very difficult to identify in the cyber
attack domain. Some hackers are known as ethical hackers, where they hack into a
network without any malicious intentions. However, other hackers hack into a system to
steal, delete, or modify critical data. Unfortunately, the intentions of the hackers cannot
be identified until a malicious act has occurred. Once a hacker gains the privileges he
needs to accomplish his goal, to our knowledge there is no model that predicts whether
the hacker will modify critical files or just simply leave the system.

If a hacker has already performed a malicious act, it is probably safe to assume that the
hacker has malicious intentions. However, if the hacker has not done any malicious
attacks, it is almost impossible to determine the intentions of the hacker.

5.2 Stochastic Modeling

The use of stochastic models such as Bayesian networks and hidden Markov models
were motivated in [14]. While [14], focused on terrorist attacks, this idea could be
extended to cyber attacks. This section will discuss how stochastic models have been or
could be developed for cyber attacks. Potential drawbacks of using such models are also
discussed.

5.2.1 Bayesian Networks

Bayesian networks are a technique to model uncertainty, and thus could be used to
predict the future if the past evidence is indicative of what could happen in the future.
The states of such a network have a certain probability of occurring. Bayesian networks
are characterized by the fact that the probability of being in one possible state of the
network is dependent upon the previous states. The probability of being in one state, X,
depends on the set of previous states, Y, i.e. P(X|Y). For a more rigorous definition and
mathematical formulation of Bayesian Networks, please see [6].

Bayesian networks can be applied to cyber attacks by defining a course of action in
which the hacker can penetrate the network. This course of action could be defined by
the types of attacks the hacker could perform or the information the hacker has
compromised during his attack. Phillips and Swiler suggest in [12], that this course of
action can be generated based on the topology of the network, the services running on
each machine, configuration, user groups, attacker profile and other network
characteristics. Each edge would be assigned a probability of transition, so the most
likely path (or the n most likely paths) could be computed using well-known algorithms.
This can be used to estimate the opportunity and intent. They also mention that different
attacker profiles can be created to estimate the capability.

19

While this is a very comprehensive idea, it may not be realistic for enterprise

networks. Even if the course of action was generated for a complex network, the
assignment of probabilities is not a trivial task. The probabilities could be assigned by
subject matter experts, but due to complexity, this could be very time consuming and
inaccurate. The probabilities could also be trained, but cyber attack data is very limited.
With the set of all possible cyber attacks constantly increasing, which makes the course
of action non-stationary, this training data may not be useful to predict the future.

The authors admit that this idea may not be scalable if the levels of aggregation are
not chosen properly (i.e. machine vs. subnet level). However, they do suggest ideas to
increase the scalability, such as using building blocks to automatically generate portions
of the course of action.

5.2.2 Hidden Markov Models

A hidden Markov model (HMM) is a Bayesian network where the current state is
dependent upon only the previous state. Each edge in an HMM is modeled by a
transition probability. They are assigned in the same way discussed in the previous
section. Using the ideas from [24], we apply them to cyber attacks. Figure 133 shows a
potential course of action. This course of action is converted to an HMM in 14. Note
that there are 9 states in the HMM which was generated from a model with only 5. As
the course of action complexity increases, the HMM will exponentially increase in size,
thus creating a significantly larger number of transition probabilities.

Figure 13: Example Guidance Template

Figure 14: Example HMM derived from Figure 1

20

5.2.3 Potential Drawbacks

The correctness of stochastic models heavily depends on the accuracy of the
probabilities. The following is a list of reasons why it may not be possible to model the
probabilities accurately enough to perform a worthwhile impact assessment.

• Complexity

As evidenced by the HMM example, the number of states grows at a very fast rate
as new states in the course of action are added. This creates a large number of
edges in which to assign probabilities. An increased complexity could lead to a
high variance among probabilities from different subject matter experts.

• High Variance

Subject matter experts are usually asked to assign the probabilities. However, it
could be likely that if a number of different experts are asked to assign these
probabilities, there could be a large variance of probabilities among the experts,
thus making the average probabilities inaccurate. The wide variance could be due
to the aforementioned complexity of the model. It is also possible that the
probabilities will widely vary among different networks.

• Incomplete Training Data
While training data could be used to train the transition probabilities, the training
data must be representative of the set of all possible data. Due to the minimal
data available for cyber attacks, the training data will be incomplete, thus making
the model inaccurate.

• Dynamically Changing Probabilities
New vulnerabilities and exploits will potentially alter the probabilities. This
implies that the model needs to dynamically change. However, if there is a
dynamic model, it is possible that hackers could artificially inflate some
probabilities by performing a large number of decoy attacks. The inflation of
these probabilities could bias the model in such a way that a likely attack will not
be interpreted as a likely attack.

5.3 Threat Assessment of Network Data and Information

Because of the drawbacks to stochastic techniques, we propose a deterministic
approach to assess the impact and threat of a cyber attack. Any probabilities that may be
associated with any transitions are ignored, so it is assumed that all transitions are equally
likely. The proposed model assumes the worst case capability and intent of the hacker –
an advanced malicious hacker. Modeling and estimating the capability of the hacker is
outside of the scope of this project, as it would require extensive studies involving the
behavior of a hacker. The intent of the hacker was also determined to be too
unpredictable to accurately model. The primary focus of this model is the opportunity of
the hacker. This model is a good building block that could eventually be extended to
incorporate probabilities, multiple hacker capabilities and intent.

21

5.4 Inputs

The following inputs are necessary for this framework (the details of the inputs will
be discussed as the algorithm is presented):

• Information hierarchy and associated criticalities
• Guidance template of possible attacks independent of targets
• Logical network topology
• Mapping of attacks/privileges to information nodes
• Mapping of targets to information nodes
• Set weights (λ1, λ2, λ3, λ4)

5.5 Information Hierarchy

The information hierarchy is a directed graph where each node represents a piece of
information that a hacker needs to obtain even more information. The edges represent
the order in which information needs to be compromised. For example, if an edge is
defined from node A to node B, it implies that the information node A represents must be
compromised before the information represented by node B can be compromised.

Each piece of information is mapped to all of the targets that can be used to access the
information as well as all of the attacks that could be used to obtain the information.
Each node is also assigned a criticality representative of the impact of that information
being compromised. The targets are related by the logical topology and the attacks are
related by a guidance template. The logical topology is defined by the order in which
machines must be compromised (this will be a very dense graph for the internal network).
The guidance template is simply a relation of attack types to define a potential course of
action for the hacker.

Figure 15 shows the information hierarchy and how it relates to the logical topology
and guidance template. To reduce the number of arrows shown, each box in the
information hierarchy indicates that each node is mapped to the machine (the nodes
defined in the logical topology) pointing to the box. The color of the information node
illustrates what attack it maps to.

22

Figure 15: Simple example of our framework

Each machine has a minimum of three levels in the information hierarchy. The first

level indicates that the hacker must know that the machine exists and potentially other
machine attributes. The second level represents the privilege levels. Any user account
could potentially be escalated to root privileges by the hacker. The third level is the
actual data stored on the machine. Note that user or root access to a machine allows
access an adjacent machine based on the logical topology. This may not be true in all
cases, but edges could always be added or removed as necessary. This is just a simple
example to illustrate the relationship between the guidance template, information
hierarchy and logical topology.

5.6 Impact Assessment

Before describing the mathematical formulation of the impact assessment, we first
define notation. Let G define the total number of attacks that have occurred. Let Ai

*
denote the type of attack of the ith attack. Let Mi

* denote the target of the ith attack. From
this A* (the set of attacks that have occurred) is defined as:

*

1

G

i
i

A
=

=*A U (12)

Similarly, M* is the set of machines that have been attacked:

23

*

1

G

i
i

M
=

=*M U (13)

Let A(X), I(X), and M(X) denote the attacks, information, and machines, respectively,
adjacent to the set X based on the mappings previously described.

Let the estimate of the set of currently compromised information be denoted by I*. It is
defined as:

()* *

1
() ()

G

i i
i

A M
=

= ∩*I I IU (14)

Information is considered compromised if an attack type is mapped to a piece of
information and the target contains that information.

5.7 Threat Assessment

The threat of a node i is denoted as t(i). The impact assessment indicated an estimate
of the pieces of information that the hacker currently has. Therefore, the threat of each
piece of information in I* can be considered to be one, i.e:

*() 1,1 | |it I i= ≤ ≤ *I (15)

It is now of interest to calculate the threat of the next possible pieces of information to be
compromised. Recall that the information hierarchy is defined such that the parent nodes
must be compromised before the children nodes. Therefore, the threat only needs to be
assessed for the set I(I*). There are four different sets used to assess the threat using this
algorithm:

()= *
1S I M (16)

(())= *
2S I M M (17)

()= *
3S I A (18)

(())= *
4S I A A (19)

S1 is the set of information associated with all machines that have been attacked. Since
those machines have been attacked, they are at risk of being attacked again. S2 is the set
of information associated with machines adjacent to the ones that have been attacked.
These machines are at a lower risk since they have not been attacked, but they can be
attacked next because of the logical topology. S3 is the information that could be
compromised by the set of attacks that already have occurred. Since the attack has
already occurred, this type of attack can possibly occur again. S4 is the information that
could be compromised by the set of next attacks that the hacker could perform.

An attack is more likely to occur on a machine in M* than a machine in M(M*) so a
higher weight is assigned to S1 than to S2. The similar case is true for S3 and S4. The
weight of Si will be λ where the λ's are defined such that:

24

10,
4

1
≤≤=∑

=

ββλ
k

k (20)

where β is defined as the maximum threat of a non-compromised node.

To assess the threat of a piece of information, the following indicator function is defined
to denote if node i is contained within set S:

0,
(,)

1,
i

m i
i

∉⎧
= ⎨ ∈⎩

S
S

S
 (21)

The threat for a node, i, contained within I(I*) is defined as:

()
1

() ,
N

k
k

t i m iλ
=

= ∑ kS (22)

In other words, the threat of the node is the sum of the weights corresponding to the sets
that the node is contained in. The maximum value of the function is incurred when the
node is contained within all four sets, so the threat level will be β. For completeness:

()() 0, ()t i i= ∉ ∪* *I I I (23)

Equations 15, 22, and 23 can be combined to create an equation for the threat of any node
in the information hierarchy:

()
1

() max (,), (, ()) ,
N

k
k

t i m i m i m iλ
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ kI* I I* S (24)

5.8 Generalization of Framework

The framework just presented could be generalized to other domains. The type of
attack and machine are two attributes of an attack. Other domains may have more than
two attributes. Our approach will now be generalized to other domains by expanding the
number of possible attributes. Let K be the number of categories of attack attributes. Let
each category be denoted by Ck where 1 ≤ k ≤ K. C*

(k,i) denotes the attack attribute(s) in
the kth category of the ith attack. Based on the C*'s, we now define J sets, each identified
by Sj where 1 ≤ j ≤ J. Every Sj has a corresponding λj which is the weight of the set. The
λj 's are defined similar to Equation 20:

25

10,
1

≤≤=∑
=

ββλ
J

j
j (25)

5.9 Impact Assessment

We define the impact assessment similar to Equation 14:

()
1 1

G K

i k= =
=* *

(k,i)I I CU I (26)

5.10 Threat Assessment

We define the threat assessment similar to Equation 24:

()
1

() max (,), (, ()) ,
N

j
j

t i m i m i m iλ
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ jI* I I* S (27)

5.11 Future Extensions

This approach can lead to a very large information hierarchy, thus making it unwieldy
for large networks. However, this information hierarchy could be created defining
generic templates for workstations and servers and generating only a portion of the
information hierarchy dynamically. This will reduce the spatial complexity of our
approach and will filter out the portions of the information hierarchy that are not being
threatened. We plan to implement this change soon.

We also plan to modify the approach slightly to use INFERD to not only generate the
information hierarchy, but to also assess the threat. The impact and threat equations we
used could be converted to INFERD’s architecture. Another extension includes factoring
in multiple attack tracks to analyze the threat. If more than one attack occurs on the same
node, the neighboring nodes should be at a higher threat since there are more avenues in
which to compromise the data. Finally, we plan to simulate this algorithm with realistic
data to analyze the effectiveness of the proposed algorithm.

6 Simulation Environment

Information fusion is the process of associating, correlating, and combining data and
information from single or multiple sources to estimate parameters, characteristics, and
behaviors of a system for the purposes of analysis or decision support [4]. Figure 16
illustrates the application of information fusion to a system. The ground truth is the actual
status of the system. From the ground truth, a set of data or information can be sensed
and passed to an information fusion process. The fused information is passed to a
decision maker that may take some action on the system in attempt to change the system
status.

26

Some of the most difficult aspects of developing information fusion methods are

validation and evaluation. The validation and evaluation processes both require data for
testing and experimentation. In some cases, the systems to which the information fusion
process is to be used are readily available so direct experimentation can take place.
However, in many applications the systems for which the information fusion processes
are being designed do not exist, may be destructive, or may be cost prohibitive to set up.
In these cases, simulation provides a good alternative.

Figure 16: Information Fusion Applied to a System

For example, in the context of cyber security, situational awareness and threat assessment
tools including information fusion techniques are being developed to aid systems
administrators in identifying and analyzing cyber attacks on computer networks [14].
These tools work by primarily processing alerts produced by intrusion detection systems
(sensors) on the computer network. To test and evaluate these tools, physical computer
networks have been set up to perform experiments from which data is collected. As an
alternative, a simulation modeling method and software is developed to generate
synthetic data.

Simulation is often used to model systems with complex behavior and subsequently
used as a basis for testing algorithms and methods including information fusion methods.
For example, Lee et al. [9] and Nicol et al. [11] present simulation modeling methods for
simulating computer network traffic at the packet level. Although simulating the flow and
processing of packets in the computer network is possible (potentially billions of packets
per day), only a small fraction of the packets cause alerts to be produced by the intrusion
detection system which in turn would be used by the information fusion tools.
Furthermore, modeling a system at this level of detail requires great amounts of time and
effort for modeling as well as requiring large amounts of computer processing time for
simulating “good” packets. As an alternative to modeling the details of packet flow in a
network, this work presents a simulation model for simulating the behavior of the
intrusion detection system by producing simulated alerts representative of malicious

Ground Truth

Information

Fusion

Decisions Sensed Data

27

cyber attacks and non-malicious network activity based on the user’s specification.
Consequently, the user can efficiently construct scenarios of various computer networks
and cyber attacks and generate the corresponding alerts.

6.1 Problem Statement

Data analysis and decision support systems, such as information fusion tools, require
experimental situations and data to be tested during development and for qualification. In
many domains, obtaining experimental data from physical systems could be dangerous,
destructive, or expensive. The goal of this work is to create a simulation framework for
generating synthetic data for the purposes of experimentation and testing. In particular,
the objective is to create a Cyber Attack Simulator that will take as input the network
configuration and information about cyber attacks on a network and create data sets
representative of alerts produced by intrusion detection systems as well as a description
of the ground truth.

6.2 Background and Related Work

This work is based in the need for testing situational awareness tools that are being
developed to detect and analyze attacks on computer networks. Since conducting cyber
attack experiments on computer systems that contain critical data is very undesirable,
several alternatives have been used. One alternative consists of setting up a physical
computer network absent of any critical data, performing cyber attacks on the network,
and collecting data from intrusion detection systems. A second alternative consists of
generating synthetic data through the use of simulation.

These two approaches have varying degrees of requirements, capabilities, and
limitations. The physical computer network requires the physical machines, networking,
and IDS components. Consequently, conducting experiments on various network
configurations involving different machines, servers, routing systems, IDS sensors, etc.
requires reconfiguration of the network and setting up the network to produce the desired
network activity and cyber attacks. The advantage of using the physical network is that
the data produced is from a real network as opposed to an abstract representation. This
also has some disadvantages in that it is impossible to replicate the experiment exactly (if
so desired) and the data produced is difficult to validate to ensure all desired information
is accounted for in the ground truth. Since physical networks are not perfectly reliable,
data can be missed, processed incorrectly, etc.

The simulation approach requires knowledge of the operation of the desired network
and its operation. This information must be captured by the simulation model to represent
the behavior of the network. However, as discussed briefly in the introduction, the level
of detail included in the model will depend on the goal of the simulation. In this case, the
packet level information and computer network traffic details are not needed, so the
simulation can be constructed at a higher level to produce alerts caused by cyber attacks
and harmless network traffic. Once the framework of the model has been established,
various network configurations can be efficiently created and experiments can be

28

conducted with various attack scenarios. Since the simulation experiments are controlled,
they can be repeated exactly and all ground truth information is known.

6.3 General Overview of the Simulation Model for Cyber Attack Data Generation

A simulation model for generating cyber attack data is developed which is to be used
for testing cyber situational awareness and analysis tools. To keep the focus on accurately
modeling cyber attacks and the resulting alert messages, a commercial simulation
package, ARENA, was used.

The capabilities of the simulation model allow a user to construct a computer network
consisting of machines that can be grouped in subnets though switches that are modeled
as connectors. The subnets can be connected to form a complete network. The machines
can also be categorized in terms of their accessibility from outside the network. In
addition, IDS sensors can be placed on the connectors to model network IDS sensors and
on the machines to model host based IDS sensors. Each IDS sensor produces an output
file containing the alerts produced during the simulation run.

The user can create attack scenarios that include the ability to specify a sequence of
attack actions over a period of time. A scenario can currently consist of up to 10 attacks
with up to 30 steps (actions) for each attack. The user can specify a constant time
between steps in the attack, the mean time between steps in the attack, or the mean time
for the entire attack. If the mean times are specified the resulting time is generated
randomly form the exponential distribution during the simulation. For each attack step,
the user can specify the attacker IP address to be one of the computers in the network or
the simulation can generate an IP for a computer outside the network. Once the attacker
IP is specified, the user can select a target IP from a subset of computers within the
network with which the attacking IP can communicate. The user can then specify the
action for each step of the attack. The 2,237 current attack actions are categorized into 5
major groups and 23 subgroups. The user can specify a specific action; or the simulation
will randomly sample from the actions within a group or subgroup depending on the level
specified by the user. Also, the user can specify the probability of success of each attack
step. The simulation will then randomly sample to determine whether the step is
successful during the simulation run. If the attack step fails, the step will be repeated until
success is achieved.

In addition to attacks, the user can specify, the rate at which non-malicious alerts
(noise) is generated, as well as the probability of noise alerts corresponding to each of the
action categories.

Once the scenario has been created, the information is saved in a file for future use.
The simulation is then run, and the attack scenario is executed. The output of the
simulation includes a file representative of the ground truth that contains the actions
generated for each attack and the time the action occurred. In addition, an output file
containing IDS alerts is produced for each IDS specified in the model. These files

29

containing IDS alerts are intended to be used to test the situational awareness and
analysis tools.

An interface has been created to enable the user to easily interact with the simulation
models. For additional information, please see the software user’s guide in Appendix A.

6.4 Simulation Methodology

Although the commercial simulation software, ARENA, is used to develop the
synthetic data set generator for cyber attacks, a significant amount of customization was
required to obtain the completed simulation tool. In this section, the general modeling
approach is discussed with the use of standard ARENA constructs followed by a
discussion of the customization.

6.4.1 General Modeling Approach

The general modeling approach for representing the computer network and cyber
attacks is to model the individual cyber attacks as entities, and the locations of the
machines within the network are modeled as stations. Figure 17 shows the model logic
for entity creation and initialization. One entity is created at the beginning of the
simulation to represent each attack. Each entity is assigned a unique attack identification
number. Then the entity executes the VBA block that samples the necessary attack
information which depends on the user specifications. The assign block following the
VBA block is used to assign the information for the first attack step to entity attributes.
The FindJ block is used to determine the station that corresponds to the IP address of the
target machine in the first attack step, and the station number is assigned to an attribute.
Then the entity is delayed until the first step in the attack is specified to start. This delay
can be constant or can be sampled randomly from an exponential distribution depending
on the user’s input. Finally, the entity is routed to the station corresponding to the target
IP address for the first attack step.

Create FindJ

Route

Assign Assign

Create Attacks and Assign Properties

DelayAssign

VBA

Figure 17: Simulation Model Logic for Creating Entities Representative of Cyber Attacks

Figure 18 shows the generic station submodel that represents each of the machine
locations in the computer network. When entities (attacks) are routed to the station
module, they enter the branch block to send the entity to the next appropriate blocks for

30

processing. The first two branches route the entity to the module logic shown in Figure
18 to print the corresponding IDS alerts. The third branch sends the entity to another
branch block where the success of the attack step is evaluated by sampling from a
uniform distribution on (0,1) and comparing this number with the probability of success
specified by the user. If the step fails, the necessary attack step information is sampled
via the VBA block, the attack information is assigned to attributes, the target IP station is
determined, the entity is delayed, and the entity is then routed to the appropriate station
similar to the sequence of action executed in Figure 17. If the attack step succeeds, the
attack step number is incremented by one, and the next step in the attack is executed. This
process is repeated until the last step in the attack is executed successfully. At this point,
the number of completed attacks is tallied, and the entity is disposed.

Station Branch
Route

Route

Branch

Dispose

Route

FindJAssign

Computer Network

Delay

Assign

AssignVBABranch

Assign

VBA

VBA

VBA

Figure 18: Generic Station Submodel Representing Network Computers

Figure 19 shows the simulation model logic used to write the ground truth and IDS
alerts to output files. The Ground Truth logic produces records in files that contain all of
the IDS alerts that would be produced if the IDS sensors covered the entire network. The
IDS Alerts logic produces records in files that contain only the IDS alerts that are
produced by the IDSs which are dependent on the location of the IDS in the network.

Figure 20 shows the simulation model logic for modeling the creation, execution, and
recording of noise alerts. The occurrence rate of noise alerts are specified by the user, and
generated via a Poisson arrival process. The VBA blocks are used to record the ground
truth and IDS alert files.

31

Dispose

VBA

Station

DisposeStation

VBA

Write Ground Truth and Snort Alerts

Ground Truth

IDS Alerts

VBA

VBA

Snort

Dragon

Branch

Branch

.

Figure 19: Simulation Model Logic for Writing Ground Truth and IDS Alert Files

Create
Dispose

Noise Creation

VBA

Branch

Delay Branch
VBA

.
Figure 20: Simulation Model Logic for Producing Noise Alerts

6.4.2 Customization of the Simulation Software

Significant customization of the ARENA simulation software was required to model
computer networks and cyber attacks. The reasons for the need to customize the software
include the fact that a simulation framework was being designed where the user could
efficiently set up a network and specify the desired attacks. One of the major aspects of
the customization was to create a template containing icons that represented machines

32

and connectors to represent the machines and switches in computer network,
respectively. Figure 21 shows the template that was created (see Kelton et al. 2004 for
information on customization of ARENA). From this template, the user can drag and
drop icons into the ARENA simulation environment to create a representation of the
computer network. Using the connection tool in ARENA, the user can specify the
connections of machines to connectors to model subnets and network connectivity.
Figure 22 shows a sample computer network created using the Network template.

Within the icon modules, the user can specify network information including the IP
address of each machine, whether the machine can be accessed from an external source,
and the user can specify whether the machine is to be monitored by a host based IDS. The
user can also specify their own descriptive name to distinguish between machines in the
network. Within the connector icon module, the user can specify the connectivity to
among subnets as well as specify whether a network IDS should be turned on.

In addition to the template, custom forms were created in visual basic to serve as
input screens for the user to specify details about the attacks and noise that are to be
simulated. Furthermore, many custom features were placed in the input menus to allow
for ease of modeling and reuse of input parameters. Finally, a user interface was created
to view the output files created for the attack alert and ground truth during the simulation.
For additional details about the user interfaces, please see the user manual in Appendix
A.

Figure 21: Network Template

33

Figure 22: Sample Computer Network Consisting of Four Subnets

6.5 Example

In this section, an example attack scenario on a computer network is presented.

Attack Description

The goal of this attack is to create a denial of service on a machine on the internal
network. The network diagram is shown in Figure 23. Information is gathered about the
external network, and then the VPN server is penetrated. The server is then used as a
stepping stone to reach the target machine. The following are the steps of the attack:

1. Enumeration on VPN server from outside of the network attempting to get user
passwords. Succeeded on first attempt. Step was encoded.

2. Intrusion at the user level on the VPN server from outside of network. Succeeded
on first attempt and attacker gained access to server. Step was encoded.

3. Backdoor left on the VPN server for future access if necessary. Succeeded on
first attempt. Step was encoded.

4. Reconnaissance on machine in subnet with snort sensor, specifically ICMP Ping
from VPN server. Succeeded on first attempt.

5. Intrusion at the user level on machine 100.10.20.1 from VPN server. Succeeded
on first attempt.

34

6. Denial of service enacted on 100.10.20.1 from VPN server. Succeeded on first
attempt. Step was encoded.

The computer network created using the Cyber Attack Simulator is shown in Figure 23.
A summary of the network is as follows:

• 1 main web-server;
• 4 main subnet domains;
• 3 subnet domains have further subnets attached;
• Only one external machine; and
• Red dots indicate snort sensor presence

Figure 23: Sample Network

Figures 24 and 25 illustrate the user interface and specifications entered for the attack.
These specifications include the following details:

• The name of the scenario is Sample Network Test;
• Delay distribution is exponential, total time for attack is broken up between steps;
• There are 80 noise alerts per hour on average. 96.5% of the noise is

reconnaissance, 3% is escalation and 0.5% is miscellaneous;
• There is one attack called Attack 1; and
• The simulation will run for two minutes after the last attack is complete.

35

Figure 24: Scenario Specification Dialog Box for Example

Figure 25: Attack Dialog Box for Example

The simulation results in the output files shown in Figures 26, 27, and 28 being
produced. The file in Figure 26 describes the attacks in a format similar to the way it was
created. The first three items displayed are the action group, subgroup and the specific
action performed. If the action was encoded, it is indicated after the action. Next are the
source and target IP address, followed by the probability of success. Finally, the file
indicates whether the action succeeded or failed.

36

Figure 26: Ground Truth Actions

The file in Figure 27 displays the alert messages for each action in the ground truth
actions file including all successes and failures.

Figure 27: Ground Truth Alerts

The file in Figure 28 shows all alerts created by noise and attack actions which the
SnortNetwork_1 IDS sensor would be able to detect given its location in the network.

Figure 28: Alert File for IDS SnortNetwork_1

6.6 Conclusions and Future Work

The Cyber Attack Simulator presented in this paper is capable of generating IDS alert
and ground truth files based on the specification of a computer network and attacks. The
simulator is built with a user interface to allow the creation of various computer network
configurations and attack actions. Although the current capabilities of the software are

37

limited to producing Snort alerts, the software is set up to easily incorporate other types
of IDS alerts. In order to do this, a mapping of the IDS alerts (such a Dragon, etc.) to the
attack actions is needed.

There are a number of advancements and improvements that could be made to the
current version of the simulation tool including the following:

• Develop a method to enable the automatic generation of multi-stage cyber attacks

based on network vulnerabilities;
• Develop and integrate a probabilistic model for simulating hacker behavior including

hacker capabilities based on the progress of the attacks, timing of attack actions, and
deception tactics;

• Develop a commercial quality software for the Cyber Attack Simulator including
mechanisms for efficiently updating the simulator to incorporate new network
hardware and software, new vulnerabilities, and new hacker behaviors; and

• Investigate the extension of the Cyber Attack Simulator concept to other domains.

7 Visualization Cyber Attacks

Visualizing cyber attacks created by the INFERD engine requires a high level view and a
low level view. The high level view allows for situation awareness of each attack track at
the same time. The low level view presents specific information relative to each attack
track and provides for impact assessment.

7.1 Related Work: VisAlert

The University of Utah has created a graphical tool, called VisAlert that periodically
captures IDS alerts and associates them with the machines (where) and the time (when)
the alerts happened. This tool allows visualizing the what, when, and where of IDS alerts
(Figure 29).

Figure 29: VisAlert (University of Utah)

38

The “what” provided by the tool are the IDS alerts, they are shown on the outside of
the large outer circle. The “when” is displayed via bands inside the outer circle. Each
band represents a time period and contains a colored rectangle displaying the number of
times a specific IDS alert occurred. The “where” is the computer network displayed in
the middle. Lines are drawn from the inner most band to the computer network to give
the user an idea of what alerts are occurring where.

This tool is effective at presenting how often IDS alerts occur but requires the user to
have expert knowledge on alert types. It is almost impossible to monitor a complex cyber
attack through pure alert level information. When alerts are numerous, the display can
become congested, as shown in Figure 29. It doesn’t matter what type of information is
placed on the “what” axis; if that entity becomes large, the display will cause confusion
and make it difficult to provide accurate situation awareness.

7.2 Views for Visualizing Cyber Attacks

7.2.1 High Level View

The high level is designed to allow the user to grasp how the network is performing
as a whole based on the notion of INFERD attack track generation. If there are numerous
attack tracks on the network, the tool presents the user with key information without
cluttering the display (Figure 30). A sortable and resizable spreadsheet is used to list
each attack track and their associated datum (ID, Depth Level, Breadth Level, Attack
type etc). A network graph, associated with the spreadsheet, presents a graphical view of
each attack track and their current situation. The graph has zooming and dragging
capabilities. The large gray nodes represent organizations, which are defined by the user.
Organizations can be IP classes, office locations, or any other containment that the user
needs to visualize their network. Nodes extending from the organizations are the
machines or subnets and are linked to the attack tracks contained in the spreadsheet.
When no tracks are selected in the spreadsheet, all tracks are represented in the network
graph by a red node. The red node is connected to the current organization of the track.
Located in the middle of the red node is the unique ID of its associated track. The smaller
nodes that extend off of the organizations represent previous or predicted attacks in the
attack tracks.

39

Figure 30: High Level Overall SituationView

If the user selects a single track or multiple tracks, the network graph changes its

display to specifically represent the previous, current, and predicted situations of the
selected track(s) (Figure 31). The small yellow nodes are the previous attacks and the
green node is the predicted attack. Each node has the unique ID of the track in its center.
When a track is removed from the spreadsheet, the nodes related to it on the network
view are also removed. This prevents the display from becoming cluttered with nodes
that are providing no information for the current overall situation awareness. The
historical information will be stored in the database of INFERD for future analysis.

40

Figure 31: High level view when an individual attack is selected

The high level view is effective at providing overall situation awareness because the

user can assess all attack tracks simultaneously. The user knows where the current
attacks are occurring (red node), what the current attacks are (spreadsheet), and when the
attacks occurred (by selecting tracks in the spreadsheet).

7.2.2 Low Level View

This view provides specific information for the attack tracks. It has four associated
displays. The first provides situation awareness and contains the complete history of the
selected track(s) by showing how they have traversed the network in time and displays
the organization, IP address, and attack type (Figure 32). Each node in the graph contains
this information and the colors correlate the same to the high level view (yellow = past
attacks, red = current attacks, green = predicted attacks). Up to four tracks can be
compared at once.

41

Figure 32: Track History

The second display contains the guidance template being used by INFERD (Figure

33). This display responds to selected tracks by showing how tracks have traversed the
template. Because the template provides a path from beginning reconnaissance stages to
ending goals, it is helpful to know the possible paths the track can take.

The third display will show impact assessment based on the work on threat

assessment. It will be shown as a graph that displays which type of information could be
compromised due to a specific attack. The fourth display will be a spreadsheet
containing all of the alerts associated with each attack track. This will allow an interested
user to drill down and get a low level idea of how INFERD is classifying tracks.

42

Figure 33: Guidance Template

7.3 Conclusion

The correct visualization for INFERD has to provide a means to view the entire
situation at once with the ability to drill down to IDS alert level information. The two
views introduced in this paper provide these functionalities. The high level view allows
for situation awareness of the entire network while the low level view permits the
specifics of attack tracks to be compared.

8 References

1. J. Allanach, H. Tu, S. Singh, P. Willett, and K. Pattipati, “Modeling threats,” IEEE

Potentials, vol. 23, no. 3, pp. 18–21, 2004.
2. C. Bennett and R. Jacik, “The zen of risk assessment,” Educause Quarterly, no. 2,

2005.
3. Q. Changwen and H. You, “A method of threat assessment using multiple attribute

decision making,” in Proceedings of 6th International Conference on Signal
Processing, vol. 2, August 2002, pp. 1091– 1095.

4. D. Hall, J. Llinas, Handbook of Multisensor Data Fusion, CRC Press, 2001.

5. D. L. Hall and J. Llinas, “An introduction to multisensor data fusion,” in Proceedings
of the IEEE, vol. 85, no. 1, January 1997, pp. 6–23.

43

6. F. Jensen, Bayesian Networks and Decision Graphs. Springer, 2001.
7. M. H. Kang and T. Mayfield, “A cyber-event correlation framework and metrics,” in

Proceedings of SPIE, vol. 5107, 2003, pp. 72–82.
8. W.D. Kelton, R.P. Sadowski, and D.T. Sturrock. (2004) Simulation with ARENA,

Third Edition, McGraw-Hill, Boston, MA.
9. J-S Lee, J-R Jung, J-S Park, and S.D. Chi. (2004) Linux-Based System Modelling for

Cyber Attack Simulation. In Proceedings of the 13th International Conference on AI,
Simulation, and Planning in High Autonomy Systems, Jeju Island.

10. E. Little and G. Rogova, “Ontology for threat assessment,” 2004.
11. D. Nicol, J. Liu, M. Liljenstam, and G. Yan. (2003) Simulation of Large-Scale

Networks Using SSF. In Proceedings of the 2003 Winter Simulation Conference, ed.
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, Institute of Electrical and
Electronics Engineers, Piscataway, NJ.

12. C. Phillips and L. P. Swiler, “A graph-based system for network vulnerability
analysis,” in NSPW ’98: Proceedings of the 1998 workshop on New security
paradigms. New York, NY, USA: ACM Press, 1998, pp. 71–79.

13. J. Pierce, R. John, An Introduction to Information Theory – Symbols, Signals, and
Noise, Dover Publishers, Inc., New York, NY, 1980.

14. M. Sudit, A. Stotz, M. Holender, Situational Awareness of a Coordinated Cyber
Attack, SPIE Defense & Security Symposium, Orlando, FL. March 2005.

15. C. Shannon, A Mathematical Theory of Communication, The Bell System Technical
Journal, volume 27, pages 379-423, 1948.

16. C. Taylor, A. Krings, and J. Alves-Foss, “Risk analysis and probabilistic survivability
assessment (rapsa): An assessment approach for power substation hardening,” in
Proc. ACM Workshop on Scientific Aspects of Cyber Terrorism, Washington, D.C.,
November 2002.

17. C. Tsallis, Nonextensive Statistics: Theoretical, Experimental and Computational
Evidences and Connections, Brazilian Journal of Physics, Vol. 29, No. 1, March
1999.

18. C. Tsallis, Entropic Nonextensivity: A Possible Measure of Complexity, Chaos
Solutions and Fractals, Vol. 13, 371-391, 2002.

19. S. Vidalis and A. Jones, “Using vulnerability trees for decision making in threat
assessment,” University of Glamorgan, School of Computing, Tech. Rep. CS-03-2,
June 2003.

20. R. R Yager,. On Ordered Weighted Averaging Aggregation Operators in Multi-
criteria Decision Making, IEEE Transactions on Systems, Man and Cybernetics 18,
183-190, 1988.

21. R. R. Yager, Hierarchical Aggregation Functions Generated from Belief Structures,
IEEE Transactions on Fuzzy Systems, Vol. 8, No. 5, 481-490, October 2000.

22. R. R. Yager, Generalized OWA Aggregation Operators, Fuzzy Optimization and
Decision Making, 2, 93-107, 2004.

23. N. Ye, Y. Zhang, and C. M. Borror, “Robustness of the markov-chain model for
cyber-attack detection,” in IEEE Transactions on Reliability, vol. 53, no. 1, Mar.
2004, pp. 116–123.

24. ——, “Detecting, tracking and counteracting terrorist networks via hidden markov
models,” in IEEE Aerospace Conference Proceedings, Mar. 2004, pp. 3246–3257.

44

APPENDIX A: Cyber Attack Simulator (Version 1.0): User’s Guide

The Cyber Attack Simulator is designed to model cyber attacks in a computer
network for the purposes of generating alerts produced by host-based and network
intrusion detection systems such as Snort. The simulator is written using a commercially
available simulation software called ARENA (version 7.0) produced by Rockwell
Software (http://www.arenasimulation.com). This software must be installed on the
computer to use the simulator. This User’s Guide is primarily focused on the use of the
Cyber Attack Simulator. For additional information on the use of ARENA, please refer to
the ARENA help menu or [8].

Software Setup

Before you begin, you will need to download the files described in Table A1 to a new
folder on your computer. A CD containing the Cyber Attack Simulator files has been
submitted to the Air Force Research Lab - IFEA

Table 2: Files Required to Use the Cyber Attack Simulator
File Name Description
Cyber Attack Simulator v1.doe Cyber Attack Simulator Template File
ListofActions.txt Attack Actions User Can Select From
SnortAlertDefs.txt Definition of Snort Alerts Mapped to Attack Actions
SnortPriorityDefs.txt Defined Priorities of Snort Alerts
HttpInspectDefs.txt Definition of Classified Snort http Inspect Messages
DragonAlertDefs.txt Definition of Dragon Alerts Mapped to Attack Actions
Network.tpo ARENA Module Template File

To use the software, begin by opening the template file “Cyber Attack Simulator

v1.doe” using the ARENA simulation software. Upon opening, the ARENA window
should display, a simulation logic diagram like the diagram displayed in Figure 34. DO
NOT EDIT THIS LOGIC. This model logic is required for the Cyber Attack Simulator
to function properly.

On the left side of the ARENA interface are template panels that contain modules
represented by icons. If the “Network” template is not already attached, using the mouse,
right-click in the template area and select attach. Then browse to the location of the file
“Network.tpo” and attach it.

45

Figure 34: Simulation Logic for the Cyber Attack Simulator

Constructing the Computer Network

To begin constructing a computer network, scroll to a blank area of the modeling
window. Using the mouse, left click on the “Machine” or “Connector” icons in the
“Network” template. Drag and drop the icon onto the modeling window. Once the
machines and connectors have been added, the connector icon on the ARENA tool bar,

, can be used to connect make connections among the machines and connectors.
Figure 35 displays an example of a subnet consisting of a connector and two machines.

46

Figure 35: Network Example

To specify the detailed information about the machines, double-click on the box labeled
“My Machine #”. The “Machine” dialog box (Figure 36) will appear with the following
input:

• The “Machine Name” is used internally in the software an cannot be changed by
the user.

• The “Machine ID” is a user specified, descriptive name for the machine. A default
machine ID is generated.

• The “IP” is a user specified IP address for the network. A default IP address is
generated.

• “External Access” - “Yes” specifies that the machine can be accessed from
outside the network (e.g. the Internet); “No” specifies that the machine can only
be accessed by machines within the network (further access limitations may be
stipulated based on the setup of the subnets and connectors.

• “IDS” – Check the boxes for the host-based IDSs that should be operational
during the simulation on this machine. A separate report file will be created for
each IDS specified.

Figure 36: Machine Dialog Box

47

To specify the detailed information about the connectors, double-click on the box labeled
“Connector #”. The “Connector” dialog box (Figure 37) will appear with the following
input:

• The “Connector Name” is used internally in the software an cannot be changed by
the user.

• “IDS” – Check the box for the network IDS that should be operational during the
simulation on this connector. A separate report file will be created for each IDS
specified.

• “No. of Connections” is used to specify the number of connectors/subnets that
this connector/subnet connects to.

Figure 37: Connector Dialog Box

Specifying Attacks and Running the Cyber Attack Simulator

Before proceeding to the attack specifications, the user can update the starting time
for the attacks by selecting RUN SETUP from the ARENA menu bar and changing
the “Start Date and Time”.

To specify the attacks and run the Cyber Attack Simulator, click on the “Go” button
in the ARENA toolbar. The “Input Type” specification dialog box (Figure 38) will
appear. The user can specify to use the attack specification interface to create an attack
scenario or if a scenario has already been defined previously, the user can specify the file
name for the scenario. Upon creating a new scenario, an input file is automatically
created that saves all of the user input with regard to the attack scenario. The file name
has the form “InputFile_<Name of Scenario>”.

Figure 38: Input Type Specification Dialog Box

48

If “User Attack Scenario Creation Interface” is selected, the scenario specification
dialog box (Figure 39) will appear. In this form you can specify the following aspects of
the attack scenario:

• “Scenario Name” - Enter a name for the scenario, this name will be used in
naming the files that are created when the simulator is run.

• “Delay Distribution” – Select whether the delay times between steps in the attack
should be user specified constants or if the delay time should be sampled from an
exponential distribution with a user specified mean value.

• “Delay Method” – Select whether the user will specify the average total time for
the attack or if the user would like to specify the average delay time between each
attack step.

• “Noise” – Specify the rate that noise alerts should generated during the
simulation. By default, 100% of the alerts will be generated from the
Reconnaissance category of attack actions. The user can specify by checking the
box associated with the categories of noise alerts to generate. Then the user can
specify the percentage of alerts of each category. These noise alerts will be
randomly generated.

• “Attacks” - The user can add, edit, or delete any of the attacks in the list. If “Add
Attack” is selected the attack specification dialog box (Figure A7) appears (see
below). Also the user can specify the average length of time the simulation should
run after the last attack has ended.

Figure 39: Scenario Specification Dialog Box

49

To specify the details of the attack, when the “Attack Specifications” dialog box
(Figure 40) appears, the following information can be specified:

• “Attack Name” – Enter a descriptive name for the attack
• “How many steps would you like for this attack?” – Enter the number of steps in

the attack and click “Reset Form”. The form will display a multiform with one tab
for each attack step.

• For each step, the user can specify the following information for the attack:
o “Source IP” – Select the attacking machine IP address or External from

the drop-down menu. If “External” a random IP address for a computer
outside the network will be generated.

o “Target IP” – Select an IP for the target machine for this step of the attack
from the drop-down menu. This list will be limited to the computer with
which the “Source IP” can communicate.

o “Probability of Success” - Specify the probability that this attack step will
be successful. If a value strictly between 0 and 1 is specified, the success
of the step will be determined randomly and the step will be repeated until
it is successful. If 0 or 1 is specified, the step will be executed only once.

o “Encode This Step?” – Specify whether the action for this step has been
encoded by the user.

o “Action” – Select a group from which an action should be selected. Then
click “Update Subgroups”. At this point, the user can specify a subgroup.
If no subgroup is selected, the action will be generated randomly from the
group specified. If a subgroup is selected, click “Update Actions”. At this
point, the user can specify an action for this step. If no action is selected,
the action will be generated randomly for the subgroup specied.

o If the user specified, “Input Specific Delays Between Steps of the Attacks”
in the scenario specification dialog box, a box will appear on the tab for
each attack step where the user can specify the average time until the next
step of the attack. If not, a box specifying the average total time for the
attack will appear on the tab for Step 1 of the attack.

• “Delay This Attack By” – Specify the average amount of time the start of the
attack should be delayed from the beginning of the simulation.

50

Figure 40: Attack Specification Dialog Box

Simulation Output

After entering the all of the information about the attack scenario, click “Run Simulation”
on the Scenario Specification dialog box. When the simulation is complete, a dialog box
(Figure 41) will appear listing the simulation output files. From this dialog box, the
output files can be viewed, the file names can be edited, or the files can be deleted.
Unless the files are deleted, they will be saved in a folder with the name of the scenario.

Figure 41: Output File Dialog Box

